

Journal of Organometallic Chemistry 501 (1995) 87-93

Synthesis of 1,6-dihalogeno-2,3,4,5-tetracarba-*nido*-hexaborane(6) derivatives *

Bernd Wrackmeyer *, Gerald Kehr

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany

Received 8 April 1995

Abstract

1,4,6,9-Tetraalkyl-3,8-diethyl-2,7-bis(diethylboryl)-5-stannaspiro[4.4]nona-1,3,6,8-tetraenes (alkyl = Et (2a), Pr (2b), ⁱPr (2c), ⁿBu (2d)) react with four equivalents of boron tribromide to give 2,3,4,5-tetraalkyl-1,6-dibromo-2,3,4,5-tetracarba-*nido*-hexaboranes(6) (3a-d) in high yield. By monitoring the progress of the reactions using ¹³C NMR spectroscopy, 2,5-diboryl-substituted 3-borolenes (10) were identified as intermediates that rearrange to the carboranes via elimination of ethylboron dibromide. Treatment of 2 with boron triiodide affords the analogous 1,6-diodo-substituted carboranes 4. The reaction of 2 with an excess of boron trichloride proceeds rather slowly, again with a 3-borolene (9) as intermediate, and leads finally to a mixture of the carboranes 5 and 6 as a result of elimination of EtBCl₂ or BCl₃. Treatment of 2 with BF₃ leads to decomposition without any defined products. The carboranes 3 react stepwise with Li[Et₃BH] to give first the monohydride with a B(6)-H bond (17) and the dihydride with B(6)-H and B(1)-H bonds (18).

Keywords: Boron; 2,3,4,5-Tetracarba-nido-hexaboranes(6); 3-Borolenes; Multinuclear NMR spectroscopy; Tin; Halide

1. Introduction

The intriguing competition between two-center and multi-center bonding becomes frequently apparent in carbon-rich carboranes [1]. In this context the C_4B_2 -system is particularly noteworthy since the classical isomers **A** [2], **B**, **C** [3], **D** [4], the 1,4-dibora-2,5-cyclohe-xadienes, and the typical nonclassical isomers **E** [5], **F** [6], **G** [7], the 2,3,4,5-tetracarba-*nido*-hexaboranes(6), are well known, and there are also various compounds, e.g. **H** [8], **I** [9] and **J** [10], displaying structural features between these extremes.

* Corresponding author.

0022-328X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05619-X

The direct interconversion between 1,4-dibora-2,5cyclohexadienes and 2,3,4,5-tetracarba-*nido*-hexaboranes(6) is forbidden by symmetry [11]. Recently, we have shown that **D** rearranges to **G**, not directly, but via cleavage of the six-membered ring into two borirene rings which recombine to give the carboranes of type **G** [4]. Another link between classical and nonclassical structures is the 1,3-diboratabenzene dianion which was obtained by reducing a 2,3,4,5-tetracarba-*nido*-hexaborane(6) derivative with two equivalents of lithium [12]. In order to establish more links between the valence isomers of the C_4B_2 -system, functional groups at the boron atoms, preferably B-halogen bonds, in the *nido*-carborane system are required.

Previously, compounds of type **F** were obtained in moderate yield from the reaction between 4-ethyl-3-diethylboryl-1,1-dimethyl-stannole and organoboron dihalides [6]. The analogous reaction with BCl₃ or BBr₃ gives complex mixtures containing only a small amount of the 6-halogeno derivative which is difficult to separate [13]. Therefore, we have looked for other stannoles as potential precursors of B-halogen substituted carboranes. Since 1,1-organoboration of tetra-1-alkynyltin compounds (1) has opened a convenient route to the 1,1'-spirobistannoles (2) (Eq. (1)) [14], it was of interest to study the reactivity of 2 towards boron halides.

2. Results and discussion

2.1. Synthesis

The 1,1'-spirobistannoles (2) are prepared according to Eq. (1), starting from the tetra-1-alkynyltin compounds (1). The products (2) can be used without further purification. In addition to the known compounds 2a (R = Et), 2b (R = Pr) and 2c (R = ⁱPr) [14], we have also obtained 2d (R = ⁿBu).

As shown in Eq. (2), the reaction of the compounds 2 with four equivalents of BBr₃ or Bl₃ affords the 1,6-dibromo- (3) or 1,6-diiodo-tetraalkyl-*nido*-carborane derivatives (4) in high yield (> 90%). The reactions are essentially complete as soon as the reaction mixtures are allowed to reach room temperature. The carboranes 3 can be purified by distillation at reduced pressure. The reaction with Bl₃ was studied only on a small scale for NMR spectroscopic measurements.

In the case of the reaction between 2 and BCl_3 , the conversion into carboranes requires several weeks at ambient temperature, and mixtures are obtained consisting of the 1,6-dichloro-tetraalkyl- (5) and 1-chloro-pentaalkyl-*nido*-carborane derivatives (6) (Eq. (3)).

Treatment of 2 with an excess of BF_3 induces decomposition, and so far we have failed to identify any products.

Mixtures of hexaalkyl-2,3,4,5-tetracarba-*nido*-hexaborane(6) (7, 8 corresponding to type G) are formed if 2 reacts with MeBBr₂ (Eq. (4)). In the case of 8, the methyl group prefers the apical position.

In most cases studied (Eqs. (1)-(4)), intermediates prior to the formation of the carboranes were detected and characterized by NMR spectroscopy. These intermediates are 3-borolenes (9–12) bearing boryl groups in 2,5-positions with the boryl groups at the same side of the ring, as shown in Eqs. (5) and (6).

If the reaction according to Eq. (6) is conducted in a 1:2 ratio of the educts, NMR data (see Section 4) indicate that the reaction mixture contains a 1,1-dibromo-stannole 13 among many other unidentified products. Treatment of 2 with PhBCl₂ does not give a 3-borolene or carboranes, but the 1,1-dichloro-stannole 14 can be identified by its NMR data (see Section 4). The other potential products, the borole 15 or its Diels-Alder dimer [15], could not be identified with certainty in the reaction mixture.

Another 2,5-diborylated 3-borolene 16, as a precursor of carboranes of type F, had already been obtained from the reaction (Eq. (7)) between 1,1,2,4,6-pentamethyl-1,4-stannabora-2,5-cyclohexadiene and MeBBr₂ (1:2 ratio) [6b]. It was shown that 16 can be converted into the carborane of type F via elimination of MeBBr₂, although this required rather harsh reaction conditions [6b]. The comparatively smooth conversion of the 3-borolenes 9–12, via elimination of boron halides, to the carboranes 3–8 can be explained considering the crowded situation in the 3-borolenes 9–12 with $R^1 =$ alkyl as compared to $R^1 = H$ (16).

First attempts to make use of the B-Br bonds in the carboranes 3 were successful. The reaction between 3 and Li[Et₃BH] leads stepwise to the carboranes 17 and 18. At first, the B(6)-Br bond is attacked selectively (Eq. (8a)) to give 17a,d which can be isolated. The selective formation of 17 indicates an exocyclic Br/H exchange process. The reaction of the carborane 17a

with a second equivalent of $Li[Et_3BH]$ affords the 2,3,4,5-tetraalkyl-2,3,4,5-tetracarba-*nido*-hexaborane(6) (18a).

2.2. NMR spectroscopic results

The ¹³C NMR data of some 3-borolenes are given in Table 1. The presence of the 3-borolene ring and the substituent pattern follows conclusively from these data. The appearence of broad ¹³C resonance signals typical of boron-bonded carbon atoms are particularly useful for the structural assignment.

¹³C and ¹¹B NMR data of the carboranes **3–8**, **17** and **18** are given in Table 2. All 2,3,4,5-tetracarba-*nido*hexaborane(6) derivatives studied here, and also those reported in the literature, are readily identified, even in dilute reaction mixtures, by their typical ¹¹B NMR spectra, showing a sharp ¹¹B NMR signal at low frequencies ($\delta^{11}B - 36.7$ to -52.9) and a much broader signal at higher frequencies ($\delta^{11}B + 6.0 - + 23$). A representative ¹¹B NMR spectrum of a reaction solution is shown in Fig. 1, where it is also possible to identify the

Table 1 11 B and 13 C NMR data of the 3-borolenes 9–11 and 16 [6b] for comparison

comparison								
Compound	C(2,5) ^a	C(3,4)	R(2,5) ^b	Et(3,4) ^b				
9d °	65.8 (br),	147.6,	34.3, 32.1, 31.7,	22.7, 22.5				
	63.9 (br)	144.1	31.1, 24.3, 24.1,	14.9, 14.8				
			14,0, 14,0					
10b ^d	69.6 (br),	148.0,	38.2, 36.8, 22.4,	22.8, 22.3				
	68.6 (br)	144.2	21.4, 15.6, 15.3	15.1, 14.9				
11b °	73.1 (br),	151.0,	38.2, 37.2, 35.6,	21.2, 20.5				
	70.3 (br)	144.3	34.5, 23.8, 23.4,	15.6, 14.3				
			23.1, 22.7, 14.3,					
	70.3 (br),		14.3, 13.8, 13.5					
	69.5 (br)							
16	76.6 (br),	136.9,	f	f				
	76.6 (br)	136.9						

^a (br) denotes broad ¹³C resonances of boron-bonded carbon atoms. ^b Without further assignment.

^c In C₆D₆ at 298 K, reaction solution. δ^{13} C = 21.4 (br), 9.5 (B*Et*). δ^{11} B = +67.7 ($h_{1/2}$ = 1600 Hz).

^d In CD₂Cl₂ at 233 K, reaction solution. δ^{13} C = not observed, 11.1 (B*Et*).

^e In CD₂Cl₂ at 233 K, reaction solution. $\delta^{13}C^{[b]} = 20.1, 19.5, 9.2, 8.5$ (BEt); 18.5, 17.9 (BMe); 11.3, 10.8 (> BMe).

^f In CDCl₃ at 298 K. $\delta^{13}C = 17.8$ (br) (BBr*Me*); 16.6 (=C*Me*); 10.3 (br) (> B*Me*). $\delta^{11}B = +86.5 B(1); +76.6 B(2, 5); \delta^{1}H = 3.44 H(2, 5).$

Fig. 1. ¹¹B{¹H} NMR spectrum (in hexane at 25 °C) at 80.3 MHz of a reaction solution (according to Eq. (2)) containing to the carborane **3c**. A slight excess of BBr₃ is still present, together with EtBBr₂ which was eliminated from the intermediate 3-borolene **10c** to give **3c**.

boron halide which is eliminated from the intermediate 2,5-diboryl-substituted 3-borolene. As can be seen from Table 1, there are characteristic differences in the $\delta^{11}B$

Fig. 2. ¹³C[¹H] NMR spectrum (in C_6D_6 at 25 °C) at 62.8 MHz of the carborane **3d** (crude product after removal of the solvent). Assignment of ¹³C(Bu) and ¹³C(Et) resonance signals was achieved by 2D ¹³C/¹H heteronuclear shift correlations; note the broadening of the ¹³C(2,5) resonance signals as a result of partially relaxed scalar ¹³C-¹¹B coupling.

data which allow to distinguish the type of substituent linked to B(1) and/or B(6).

There is also a typical pattern of the ¹³C NMR

 Table 2

 ¹¹B and ¹³C NMR data ^a of substituted 2,3,4,5-tetracarba-nido-hexa-boranes(6)

Compound	δ ¹³ C							δ ¹¹ B ^d	
	C(2,5)	C(3,4)	R(2,5)	<i>Et</i> (3,4)	B <i>R</i> (1)	BR(6)	$\overline{B(1)}$	B(6)	
3a	101.2 (br)	112.1	18.9, 14.5	18.0, 13.6			-40.3	+ 14.8	
3b	100.1 (br)	112.4	27.7, 23.3 14.6	18.6, 13.6		_	-40.2	+ 15.5	
3c	104.6 (br)	111.5	27.0, 20.8 23.7	18.2, 13.7		_	- 41.3	+13.8	
3d	100.2 (br)	112.2	33.3, 25.4 23.1, 14.5	18.2, 13.6		_	- 40.1	+ 15.5	
4a	105.1 (br)	114.3	20.8, 14.3	19.1, 13.6			- 52.4	+6.0	
4d	104.2 (br)	114.2	32.2, 27.2 23.1, 14.1	19.0, 13.4			- 52.2	+ 6.6	
5d ^b	99.7 (br)	110.7	32.3, 25.4 23.5, 14.4	18.0, 13.8			- 36.7	+14.6	
6d ^b	97.3 (br)	110.7	32.3, 25.1 23.1, 14.3	17.9, 13.6		3.8 (br), 12.0	- 36.7	+ 18.9	
7b ^с	98.6 (br)	110.4	28.2, 25.0 14.7	17.8, 14.4	- 15.4 (br)	- 5.9 (br)	- 45.5	+17.8	
8b ^c	98.6 (br)	110.1	28.2, 24.7 14.8	17.8, 14.4	- 15.4 (br)	4.1 (br), 14.7	- 45.5	+ 17.8	
17a	105.9 (br)	114.9	20.1, 14.8	18.2, 13.2	<u> </u>		- 40.9	+ 10.9 °	
17d	104.9 (br)	114.8	32.7, 26.7 23.2, 14.3	18.2, 13.3			-40.8	+11.0 ^f	
18a	103.6 (br)	112.0	20.2, 15.9	17.7, 14.9			- 52.9	+8.4 ^g	

^a In $C_6 D_6$ (50% v/v, 25 °C); (br) denotes broad ¹³C resonances of boron-bonded carbon atoms.

^b A 2:1 mixture of **5b** and **6d**.

^c A 1:1 mixture of 7b and 8b.

^d Full width at half height $h_{1/2}$ (¹¹B(1){¹H}) = 10 ± 5 Hz; $h_{1/2}$ (¹¹B(6){¹H}) = 250 ± 30 Hz.

 ${}^{e}_{h} {}^{1}J({}^{11}B(6){}^{1}H) = 145.0$ Hz.

 ${}^{f_1}J({}^{11}B(6){}^{1}H) = 149.0$ Hz.

 ${}^{g^{-1}}J({}^{11}B(6){}^{1}H) = 136.0 \text{ Hz}; {}^{1}J({}^{11}B(1){}^{1}H) = 199.0 \text{ Hz}.$

signals of the carboranes in the region for the carbon atoms in 2,3,4,5-position ($\delta^{13}C(2,5)$ 97.3–105.9 and $\delta^{13}C(3,4)$ 110.1–114.9) with broad $^{13}C(2,5)$ NMR signals owing to partially relaxed scalar $^{13}C(2,5)-^{11}$ B coupling (Fig. 2). The influence of substituents at the boron atoms on the range of the $\delta^{13}C(2,3,4,5)$ values is surprisingly small. The assignment of the $^{13}C(3ky)$ resonance signals and parts of the extremely complex pattern of the ¹H NMR spectra was achieved by 2D $^{13}C/^{1}$ H heteronuclear shift correlations (HETCOR) based on coupling constants $^{1}J(^{13}C^{1}H)$ and long-range coupling constants $^{n}J(^{13}C^{1}H)$ (n = 2 or 3) together with 2D $^{1}H/^{1}$ H cosy experiments.

The coupling constants ${}^{1}J({}^{11}B^{1}H)$ for the carboranes 17 and 18 are typical of the bonding situation [16], with a large value (199.0 Hz) for the apical ${}^{11}B(1)$ which is formally sp hybridized, and smaller values (136–149 Hz) for the ${}^{11}B(6)$ nuclei, formally sp² hybridized.

3. Conclusions

The first examples of 1,6-dihalogeno 2,3,4,5-tetracarba-*nido*-hexaborane(6) derivatives, e.g. **3** (halogen = Br) have been prepared in high yield. In all cases studied, the precursors of the carboranes were identified as 2,5-diboryl-substituted 3-borolenes. The new 1,6-dibromo-substituted carboranes **3** will serve as starting materials in order to explore the chemistry of these carboranes and to find further links between various valence isomers of the C_4B_2 system. The conversion of the carboranes **3** to the monohydride (**17**) and the dihydride (**18**) is the first proof of the reactivity and the synthetic potential of these 1,6-dihalogeno-2,3,4,5-tetracarba-*nido*-hexaborane(6) derivatives.

4. Experimental details

All preparative work and handling of the samples was carried out under N₂, using dry glassware and dry solvents. Deuterated solvents were stored over molecular sieves and saturated with N₂. Starting materials such as BCl₃ (Merck), BBr₃ (Fluka) and LiBEt₃H (Aldrich, 1M in THF) were commercial products. Bl₃ [17], MeBBr₂ [18], the alkynyl tin compounds **1a**-**d** [19] and the 5-stannaspiro [4.4]nona-1,3,6,8-tetracnes **2a**-**c** [14] were prepared according to literature procedures. EI-MS spectra (70 eV): Varian MAT CH 7 with direct inlet. NMR spectra: Jeol FX 90 Q (¹¹B), Jeol EX 270 (¹H, ¹³C) Bruker ARX 250 and Bruker AC 300 (¹H, ¹¹B, ¹³C); chemical shifts are given with respect to Me₄Si (δ^{1} H(C₆D₅H) = 7.15; δ^{13} C(C₆D₆) = 128.0; Et₂O-BF₃ (δ^{11} B: Ξ (¹¹B) = 32.083971 MHz).

4.1. 1,4,6,9-Tetrabutyl-3,8-diethyl-2,7-bis(diethylboryl)-5-stannaspiro[4.4]nona-1,3,6,8-tetraene (2d)

A solution of 3.55 g (8.0 mmol) of 1d in 40 mml of toluene was cooled to -78 °C and 3.30 ml (25 mmol) of BEt₃ were added in one portion. The mixture was warmed to room temperature and heated to 60 °C for 12 h. After removal of the solvent together with the excess of Et₃B in vacuo, the oily residue consisted already of pure (> 95% according to ¹H and ¹³C NMR spectroscopies) 2d. Further purification by distillation (b.p. 185–190 °C/10⁻³ Torr), accompanied by decomposition, gave 3.8 g (75%) of 2d.

MS ($C_{36}H_{66}B_2Sn$): m/z (%) = 640 (3) [M⁺], 611 (3), 380 (4), 57 (100). ¹H NMR (C_6D_6 , 298 K): $\delta = 2.43$ m, 2.16 m, 1.49–1.15 m, 0.85 t, 0.82 t, 18H, Bu; 2.03 q, 0.99 t, 5H Et(4); 1.49–1.15 m, 1.09 m 10H, B Et_2 . ¹³C NMR (C_6D_6 , 298 K): δ [$^nJ(^{119}Sn^{13}C)$] = 165.0 [50.1] (br) (= CB); 152.4 [112.3] (= CEt); 140.8 [382.6] (= CBu); 140.1 [433.8] (= CBu); 35.7 [69.2]/32.2 [62.1], 36.4 [18.0]/36.7 [17.4], 23.3/23.1, 14.4/14.4 (Bu); 26.7 [53.0], 14.4 [9.0] (Et); 22.7 (br), 9.5 (B Et_2); ¹ $J(^{13}C(1)^{13}C(2))$ = 56.0 Hz; ¹ $J(^{13}C(3)^{13}C(4))$ = 65.5 Hz.

4.2. Reaction of 2 with boron tribromide to give 2,3,4,5-tetraalkyl-1,6-dibromo-2,3,4,5-tetracarba-nido-hexaboranes(6) (3) (general procedure)

Boron tribromide (2.5 ml, 26.4 mmol) was added in one portion to cooled solutions (-78 °C) of **2a-d** (3.4 mmol) in 20 ml of hexane. After warming to room temperature, the red reaction solutions were stirred for further 3 h. After filtration from insoluble material, followed by removal of the solvent and BBr₃ in vacuo, crude red products were left. Fractional distillation gave the pure 2,3,4,5-tetraalkyl-1,6-dibromo-2,3,4,5-tetracarba-*nido*-hexaboranes(6) **3** in high yield (up to 98% with respect to **2**).

3a: b.p. $80-85 \text{ °C}/3 \times 10^{-3}$ Torr. MS ($C_{12}H_{20}B_2$ Br₂) m/z (%) = 346 (100) [M⁺]. ¹H NMR (C_6D_6 , 298 K): $\delta = 2.45$ m, 1.92 m, 1.13 t, 10H, Et(2,5); 2.00 m, 1.99 m, 0.95 t, 10H, Et(3,4).

3b: b.p. $85-90 \ {}^{\circ}C/3 \times 10^{-3}$ Torr. MS ($C_{14}H_{24}B_2$ -Br₂): m/z (%) = 374 (100) [M⁺]. ¹H NMR (C_6D_6 , 298 K): $\delta = 2.20$ m, 1.87 m, 1.59 m, 0.92 t, 14H, Pr(2,5); 2.08 m, 2.04 m, 1.00 t, 10H, Et(3,4).

3c: b.p. $75-90 \ {}^{\circ}C/3 \times 10^{-3}$ Torr. MS ($C_{14}H_{24}B_2$ -Br₂): m/z (%) = 374 (100) [M⁺]. ¹H NMR (C_6D_6 , 298 K): $\delta = 2.52$ sp, 1.32 d, 1.23 d, 14H, ^{*i*}Pr(2,5); 2.09 m, 2.08 m, 1.01 t, 10H, Et(3,4).

3d: b.p. $85-95 \ ^{\circ}C/3 \times 10^{-3}$ Torr. $MS(C_{16}H_{28}B_2-Br_2)$: $m/z \ (\%) = 402 \ (100) \ [M^+]$. ¹H NMR $(C_6D_6, 298 \ K)$: $\delta = 2.21 \ m, 1.88 \ m, 1.58 \ m, 1.50 \ m, 1.21 \ m, 0.87 \ t, 18H, Bu(2,5)$; 2.08 m, 1.02 t, 10H, Et(3,4).

The reactions between 2a, 2d and boron triiodide were carried out as described for BBr₃, but on a smaller scale for NMR measurements. The reactions were complete as soon as the mixtures had reached room temperature. According to the NMR spectra quantitative conversion to the 1,6-diiodo-carboranes 4a and 4d had taken place.

The reaction between 1d and boron trichloride was also carried out as described for BBr_3 and monitored by NMR. The reaction was complete only after three weeks at room temperature and gave a mixture of 5d and 6d.

4.3. Reaction of **2b** with BBr₃ to give 1-bromo-2-dibromoboryl-5-bromo(ethyl)boryl-3,4-diethyl-2,5-dipropyl-3-borolene (**10b**)

An excess of boron tribromide was injected into a cooled solution (-78 °C) of **2d** (0.2 mmol) in 1.5 ml of CD₂Cl₂. The reaction was monitored by NMR spectroscopy between -78 and +25 °C. The formation of the 3-borolene **10b** was observed at -40 °C. After 2 h at room temperature, **10b** was completely converted, by elimination of EtBBr₂ (¹¹B NMR; see also Fig. 1) to the 2,3,4,5-tetracarba-*nido*-hexaborane(6) (**3b**).

4.4. Reaction between 2b and $MeBBr_2$ in a 1:1 ratio, leading to 1,1-dibromo-3-diethylboryl-4-ethyl-2,5-dipropyl-stannole (13)

The reaction was carried out as described for the other boron halides. ¹³C NMR (CD₂Cl₂; -40 °C): δ [$J(^{119}\text{Sn}^{13}\text{C})$] = 158.3 (br) [104.5] C(3); 147.0 [269.8] C(4); 131.5 [698.8] C(5); 131.1 [590.6] C(2); 35.0 [98.9], 31.7 [85.8], 26.0 [17.2], 25.8, 15.0, 14.6 Pr(2,5); 27.4 [105.5], 14.2 Et(4); 22.2 (br), 8.9 BEt₂. ¹¹⁹Sn NMR (CD₂Cl₂; -40 °C): δ = -33.7.

4.5. Reaction between **2b** and PhBCl₂ in excess, leading to 1,1-dichloro-3-diethylboryl-4-ethyl-2,5-dipropyl-stannole (14)

The reaction was carried out as described for the other boron halides. ¹³C NMR (CD₂Cl₂; 25 °C): $\delta[J(^{119}\text{Sn}^{13}\text{C})] = 160.5$ (br) C(3); 149.1 [275.2] C(4); 131.9 [809.0] C(2); 130.9 [641.9] C(5); 35.6 [95.8], 32.3 [85.2], 26.5 [19.5], 26.1 [17.4], 14.5, 14.4 Pr(2,5); 28.3 [102.1], 13.9 [11.6] Et(4); 22.8 (br), 9.3 BEt₂. ¹¹⁹Sn NMR (CD₂Cl₂; 25 °C): $\delta = +13.1$.

4.6. 2,3,4,5-Tetraalkyl-1-bromo-2,3,4,5-tetracarbanido-hexaborane(6) (17a,d) (general procedure)

Solutions of the 1,6-dibromo-carborane (10 mmol) in 30 ml of THF were cooled to -78 °C and 10 ml of a solution of Li[BEt₃H] in THF (1 M) was added. The reaction solution was warmed to room temperature and after stirring for 12 h the solvent was removed in vacuo $(10^{-3}$ Torr). Fractional distillation gave the pure products 17a and 17d in high yield (> 90%) as colorless, air-sensitive liquids.

17a: b.p. $70-75 \text{ °C}/10^{-3}$ Torr. ¹H NMR (C₆D₆, 298 K): $\delta = 3.88$ (br) [¹J(¹¹B(6)¹H) = 145.0 Hz] 1H, B(6)H; 2.06 m, 1.20 t, 10H, Et(2,5); 2.06 m, 1.01 t, 10H, Et(3,4).

17d: b.p. 78-82 °C/10⁻³ Torr. ¹H NMR (C₆D₆, 298 K): $\delta = 3.98$ (br) [¹J(¹¹B(6)¹H) = 149.0 Hz] 1H, B(6)H; 2.07 m, 1.67 m, 1.37 m, 1.01 t, 18H, Bu(2,5); 2.06 m, 0.90 t, 10H, Et(3,4).

4.7. 2,3,4,5-Tetraethyl-2,3,4,5-tetracarba-nidohexaborane(6) (18a)

The reaction between **3a** (3.45 g, 10 mmol) and an excess of Li[BEt₃H] (30 ml of a 1M THF solution) was carried out as described for **17**. Fractional distillation gave 1.6 g (85%) of pure **18a** as a colorless, air-sensitive liquid (b.p. $30-34^{\circ}C/10^{-3}$ Torr). ¹H NMR (C_6D_6 , 298 K): $\delta = 3.88$ (br) [¹J(¹¹B(6)¹H) = 136.0 Hz] 1H, B(6)H; 2.23 m, 1.13 t, 10H, Et(2,5); 2.05 m, 0.99 t, 10H, Et(3,4); -0.85 [¹J(¹¹B(1)¹H) = 199.0 Hz] 1:1:1:1 q, 1H, B(1)H.

Acknowledgments

Support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- (a) R.N. Grimes, Carboranes, Academic Press, New York, 1970;
 (b) R.N. Grimes, Adv. Inorg. Chem. Radiochem., 26 (1983) 55;
 (c) R. Köster, G. Seidel and B. Wrackmeyer, Angew. Chem., 97 (1985) 317; Angew. Chem. Int. Ed. Engl., 24 (1985) 326;
 (d) R. Köster, G. Seidel, B. Wrackmeyer, D. Bläser, R. Boese, M. Bühl and P.v.R. Schleyer, Chem. Ber., 124 (1991) 2715.
- [2] P.L. Timms, Acc. Chem. Res., 6 (1973) 118 and references therein.
- [3] G.E. Herberich and B. Hessner, J. Organomet. Chem., 161 (1978) C36.
- [4] B. Wrackmeyer and G. Kehr, Polyhedron, 10 (1991) 1497.
- [5] (a) V.R. Miller and R.N. Grimes, *Inorg. Chem.*, 11 (1972) 862;
 (b) T.P. Onak and G.T.F. Wong, J. Am. Chem. Soc., 92 (1970) 5226.
- [6] (a) L. Killian and B. Wrackmeyer, J. Organomet. Chem., 132 (1977) 213; (b) H.-O. Berger, H. Nöth and B. Wrackmeyer, Chem. Ber., 112 (1979) 2884.
- [7] (a) P. Binger, Tetrahedron Lett., (1966) 2675; (b) P. Binger, Angew. Chem., 80 (1968) 288; Angew. Chem. Int. Ed. Engl., 7 (1968) 286; (c) R. Köster and M.A. Grassberger, Angew. Chem., 79 (1967) 197; Angew. Chem. Int. Ed. Engl., 6 (1967) 218.

(d) B. Wrackmeyer and Z. Naturforsch., *Teil B*, 37 (1982) 412; (e) R. Schlögl and B. Wrackmeyer, *Polyhedron*, 4 (1985) 895.

- [8] G.E. Herberich, H. Ohst and H. Mayer, Angew. Chem., 96 (1984) 975; Angew. Chem. Int. Ed. Engl., 23 (1984) 969.
- [9] H. Michel, D. Steiner, S. Wocadlo, J. Allwohn, N. Stamatis, W. Massa and A. Berndt, Angew. Chem., 104 (1992) 629; Angew. Chem. Int. Ed. Engl., 31 (1992) 607.
- [10] M. Enders, H. Pritzkow and W. Siebert, Angew. Chem., 104 (1992) 628; Angew. Chem. Int. Ed. Engl., 31 (1992) 606.
- [11] P.H.M. Budzelaar, S.M. van der Kerk, K. Krogh-Jespersen and P.v.R. Schleyer, J. Am. Chem. Soc., 108 (1986) 3960.
- [12] C. Balzereit, H.-J. Winkler, W. Massa and A. Berndt, Angew. Chem., 106 (1994) 2394; Angew. Chem. Int. Ed. Engl., 33 (1994) 2306.
- [13] B. Wrackmeyer, unpublished results.
- [14] B. Wrackmeyer, G. Kehr, A. Sebald and J. Kümmerlen, Chem. Ber., 125 (1992) 1597.

- [15] (a) G.E. Herberich and H. Ohst, *Chem. Ber.*, 118 (1985) 4303;
 (b) P.J. Fagan, E.G. Burns and J.C. Calabrese, *J. Am. Chem. Soc.*, 110 (1988) 2979.
- [16] (a) G.R. Eaton and W.N. Lipscomb, NMR Studies of Boron Hydrides and Related Compounds, Benjamin, New York, 1969.
 (b) L.J. Todd and A.R. Siedle, Progr. NMR Spectrosc. 13 (1979) 87;
 (c) A.B. Siedle, Avery, Bar, NMB Spectrosc. 12 (1982) 2771.

(c) A.R. Siedle, Annu. Rep. NMR Spectrosc., 12 (1982) 277; Annu. Rep. NMR Spectrosc., 20 (1988) 205.

- [17] W.C. Schumb, E.L. Gamble and M.D. Banus, J. Am. Chem. Soc., 71 (1949) 3228.
- [18] K. Niedenzu, Organomet. Chem. Rev., A 1 (1966) 305.
- [19] (a) W.E. Davidsohn and M.C. Henry, *Chem. Rev.*, 67 (1967) 73; (b) B. Wrackmyer and G. Kehr, *Main Group Met. Chem.*, 16 (1993) 305.